Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Federated learning (FL) is a promising technique for decentralized privacy-preserving Machine Learning (ML) with a diverse pool of participating devices with varying device capabilities. However, existing approaches to handle such heterogeneous environments do not consider “fairness” in model aggregation, resulting in significant performance variation among devices. Meanwhile, prior works on FL fairness remain hardware-oblivious and cannot be applied directly without severe performance penalties. To address this issue, we propose a novel hardware-sensitive FL method called\(\mathsf {FairHetero}\)that promotes fairness among heterogeneous federated clients. Our approach offers tunable fairness within a group of devices with the same ML architecture as well as across different groups with heterogeneous models. Our evaluation underMNIST,FEMNIST,CIFAR10, andSHAKESPEAREdatasets demonstrates that\(\mathsf {FairHetero}\)can reduce variance among participating clients’ test loss compared to the existing state-of-the-art techniques, resulting in increased overall performance.more » « less
-
Server-level power monitoring in data centers can significantly contribute to its efficient management. Nevertheless, due to the cost of a dedicated power meter for each server, most data center power management only focuses on UPS or cluster-level power monitoring. In this paper, we propose a low-cost novel power monitoring approach that uses only one sensor to extract power consumption information of all servers. We utilize the conducted electromagnetic interference (EMI) of server power supplies to measure their power consumption from non-intrusive single-point voltage measurements. We present a theoretical characterization of conducted EMI generation in server power supply and its propagation through the data center power network. Using a set of ten commercial-grade servers (six Dell PowerEdge and four Lenovo ThinkSystem), we demonstrate that our approach can estimate each server's power consumption with less than ~7% mean absolute error.more » « less
-
Server-level power monitoring in data centers can significantly contribute to its efficient management. Nevertheless, due to the cost of a dedicated power meter for each server, most data center power management only focuses on UPS or cluster-level power monitoring. In this paper, we propose a low-cost novel power monitoring approach that uses only one sensor to extract power consumption information of all servers. We utilize the conducted electromagnetic interference of server power supplies to measure its power consumption from non-intrusive single-point voltage measurement. Using a pair of commercial grade Dell PowerEdge servers, we demonstrate that our approach can estimate each server's power consumption with ~3% mean absolute percentage error.more » « less
An official website of the United States government
